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Abstract

In this paper we investigate the effect of a weak structural nonlinearity on the dynamical behaviour of a vertical offshore

riser subjected to vortex-induced vibration (VIV). Coupling of the riser dynamics with the flow of the surrounding fluid is

achieved by attaching a wake oscillator to a reduced model of the structure, which is obtained through the application of

the invariant manifold technique for the derivation of nonlinear normal modes.

By comparing the free responses of the linear and the nonlinear structure, it was found that the structural nonlinearity

has a stiffening effect on the oscillation of the riser, which becomes more pronounced when the internal flow is

incorporated into the model. Consequently, in the coupled system, the response is considerably modified for the structure

as well as for the fluid variable.

Crown Copyright r 2008 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Marine structures can exhibit different dynamical behaviours due to variable ambient excitation they are
subjected to. Offshore risers, a family of such structures that are normally fully submerged, experience
primarily vortex-induced vibration (VIV) caused by sea currents. When velocities of these currents are large
enough, the difference of pressures acting on the cylindrical structure of a riser creates the condition where
vortices begin shedding downstream. This in turn leads to vibration of the flexible riser. Bishop and Hassan [1]
observed that an interaction between oscillations of a slender structure and the wake created behind its body
takes place, and this can lead to synchronisation of the vortex-shedding frequency with a natural frequency of
the riser when the two are sufficiently close. The most undesirable consequence of this lock-in phenomenon is
the resulting resonant motion that can induce elevated stresses in the structure, thus shortening the riser’s
operational life. In order to prolong their use, vortex-suppression devices are being used by the oil and gas
industry, which, despite being effective under certain conditions, can prove to be a very costly solution.
Furthermore, as Trim et al. [2] showed experimentally for helical strakes, the ability of such devices to
suppress motion is dependent on their geometry as well as on the configuration of flow at the part of the riser
ee front matter Crown Copyright r 2008 Published by Elsevier Ltd. All rights reserved.
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that is bare. Results also indicate that best performance is obtained if the vortex-suppression devices are
attached along the entire length, which makes the construction and installation of risers more complicated.
Therefore, it would be highly desirable to avoid using such devices altogether. This could be achieved through
a better understanding of the interactions between the fluid and the structure, especially with respect to the
responses of the latter. Additionally, a deeper insight into the dynamics would enable improved predictions of
fatigue life, which for offshore risers is largely dominated by vortex-induced vibrations [3].

The purpose of the research presented in this paper was to examine how the behaviour of the coupled
system changes in the lock-in when a weak structural nonlinearity is introduced into the model of a vertical
riser. Typically, in investigations of fluid–structure interactions applied to offshore risers, nonlinearities are
restricted only to the fluid forces, while the structure is modelled as a perfectly linear system. Assuming that
the tensile force applied at the top of the riser is very large and therefore appears to hide certain characteristics
of nonlinear behaviour, pertaining especially to the modal shape as well as the amplitude and natural
frequency [4], approximation of the response with linear normal modes would be perfectly valid. However,
Lucor et al. [5], who studied vibration of a tensioned riser, noticed that the motion in the non-uniform flow
cannot be captured by just one linear mode due to the mixture of standing and travelling waves in the
oscillation of the riser. Similarly, results of experiments with a tensioned riser in a stepped current suggest a
multimodal response with significant contributions from several indirectly excited modes that control its
dynamics even in lock-in at a natural frequency of the dominant mode [6]. This indicates a nonlinear nature of
the structural dynamics that is affected by the nonlinearity in the forcing from the fluid. Therefore, a more
detailed description of a the structure is needed. On the other hand, a more precise model will increase the
complexity of the entire system, mostly due to the interactions between the structural and fluid nonlinearities.
Inevitably, justification for the longer computational time in terms of the contribution of additional nonlinear
relation needs to be made in this case.

Often analytical and numerical analyses take advantage of the fact that, when synchronisation occurs, the
structure oscillates at a resonant frequency, enabling that only a reduced model of the system is considered in
modal space by equating the respective frequencies [7]. Modal decomposition through modal analysis is
performed for the structural part of the system, and for the problem at hand, nonlinear normal modes might
prove to be a valuable tool. Like the linear modes, the nonlinear ones represent the dynamics of a chosen
mode but can accommodate also nonresonant modes as well as connections between them occurring as, for
example, internal resonances [8]. Serious study of nonlinear normal modes began in the 1960s with the
application firstly to the discrete conservative systems [9]. To date several methods capable of building them
have been proposed; among others, techniques based on the harmonic balance and generalised Ritz methods
[10], centre manifold theory for the invariant manifold approach proposed by Shaw and Pierre [11], multiple
scales techniques [12] for systems with weak nonlinearities, the normal form approach [13]. In contrast to
linear theory, the ability to incorporate damping without the need for it to be expressed in the complex domain
is common to most of these techniques. They are therefore very suitable for modelling modal dynamics of real
structures experiencing travelling waves. However, for the desired characteristics of the motion to be retained
in the reduced model, both the structural and fluid parts need to be transferred to a common space, where the
final analysis is then carried out.

Sarpkaya [14] and Gabbai and Benaroya [15] give a comprehensive overview of different approaches that
have been employed to describe the wake phenomena for fixed as well as flexible cylinders oscillating in lock-
in. As shown, some of them are very suitable for transformation to modal space, especially those that
specifically formulate the forcing caused by the currents, including not necessarily only contributions from
vortex-shedding, but also from other sources like wave motion, to achieve the desired effect on the structure.
An example of a relatively simple model for the combined motion of a casing pipe resembling a riser was
obtained by You-Gang et al. [16] in this way. Another approach that allows one to build reduced-order
models, which account for nonlinearities of the fluid forcing, is based on a wake oscillator governed by the van
der Pol-type differential equation [15,17]. A particular feature of this approach is that the equation modelling
the change of the lift coefficient is described independently of the structural oscillator. The connection with the
latter is introduced into the fluid equation through the forcing term.

Offshore risers experience additional excitation from the flow of the fluid inside the pipe. Since the external
and the internal flows act on the structure simultaneously, they should both be considered in the analysis. The
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work presented here takes into account the influence of internal flow, although some simplifications were
made. Details of these are given in the next section where the mathematical model is explained. Further, a
reduction procedure for the linear and nonlinear structures as well as the forcing terms is proposed in Section
3. Free responses of the linear and nonlinear systems are obtained through nonlinear normal modes in Section
4, while the forced responses are analysed in Section 5. Finally, a summary with final remarks is given in
Section 6.

2. Description of the model

The adopted model for the fluid–structure interactions considered here consists of two parts that are
described separately. The structural part, representing a straight but slender, vertically positioned pipe, is
modelled as an Euler–Bernoulli beam with flexural stiffness. Although pretension is normally applied in actual
applications of risers, an external tensile force is not included in the present model since the aim is only to
evaluate the effect of an added nonlinearity. For the model to be as simple as possible, the length-wise mass
distribution is also neglected. The structure may move only in the direction normal to flow (Fig. 1 (b)), an
assumption that is quite valid when its flowwise displacement is relatively small. For flexible cylinders
supported at both ends, experimental investigations show that the cross-flow response dominates over the in-
line motion in terms of amplitude [18], therefore having a greater contribution in the fatigue of the riser’s
material.

The governing differential equation for the continuous structure with purely linear characteristics has the
following form:

m�
q2vðz; tÞ
qt2

þ EI
q4vðz; tÞ
qz4

þ m
q2vðz; tÞ
qz2

¼ f ðz; tÞ, (1)

where vðz; tÞ is the lateral displacement of the structure and f ðz; tÞ is the external forcing. The mass parameter
m� includes the mass of the fluid inside the pipe (for a riser with internal flow), the mass of the pipe, and the
added mass due to the fluid displacement during oscillation:

m� ¼ rFi
Ai þ rSTAo þ rF o

ðAi þ AoÞ. (2)

The coefficient of added mass can be omitted here since the cross-section of the riser is perfectly circular and
the surfaces are ideally smooth [19]. An approximation of forcing due to the fluid flowing inside the pipe,
which is modelled here as a part of the structural oscillator, neglects internal damping, gravitational, and
y
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Fig. 1. A physical model of a vertical riser operating in lock-in condition; (a) geometrical configuration of the structure and (b) a cross-

section of the riser showing the direction of the response in relation to excitation by a current.
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pressurisation effects, but includes the contribution from the centrifugal forces [20]:

m ¼ rFi
AiU

2
i . (3)

Under the prescribed external forcing and the fact that the structure oscillates in lock-in, the shape of the
motion will resemble a modal response of a dominant normal mode [18,21]. Since for normal modes the
Coriolis forces, arising as a result of the deformation of the riser, do no work [20], they are also left out.
However, it should be pointed out that this does not mean their influence on the overall response can be totally
dismissed even when the system is gyroscopic conservative. In the present model this is done for the purpose of
avoiding a more complex analysis (see for instance the nonlinear analysis of Kuiper and Metrikine [22]), which
might obscure certain properties associated with the nonlinearities due to too many parameters affecting each
other. Additionally, since the actual spatial distribution of nonlinear displacements is not known at this stage,
the authors decided to keep all characteristics the same to enable a straightforward comparison. The only
difference between the two studied configurations is expressed in the strain function:

�ðu; vÞ ¼
quðz; tÞ

qz
þ

1

2

qvðz; tÞ

qz

� �2

, (4)

which couples the transverse vðz; tÞ and axial uðz; tÞ displacements. As discussed above, the nonlinear
differential equation for lateral motion has a similar form to its linear counterpart, Eq. (1), with one added
term:

m�
q2vðz; tÞ

qt2
þ EI

q4vðz; tÞ
qz4

þ m
q2vðz; tÞ
qz2

� EA
q
qz

�ðu; vÞ
qvðz; tÞ

qz

� �
¼ f ðz; tÞ, (5)

but for a full description this model requires the axial motion to be included as well:

m�
q2uðz; tÞ

qt2
� EA

q�ðu; vÞ
qz
¼ 0. (6)

The same time-varying forcing f ðz; tÞ from the external flow is imposed on the structures in both examples. The
right-hand sides of Eqs. (1) and (5) contain, respectively, external damping as well the lift force, which induces
the motion in the cross-flow direction:

f ðz; tÞ ¼ f Dðz; tÞ þ f Lðz; tÞ. (7)

The hydrodynamic damping is the only source of energy dissipation in the system, since a small structural
damping coefficient can be assumed for a long slender riser [23]. In linearised form it is expressed as [21]

f Dðz; tÞ ¼ �
1

2
CDrFo

DUeðzÞ
qvðz; tÞ

qz
, (8)

where CD is the damping coefficient, whose value can be taken as 1.2 in the region of Reynolds numbers for
well-developed wakes [24]. Because the incident flow is steady with a constant value UeðzÞ ¼ U0 at each point
along the riser, as shown in Fig. 1(a), the damping the structure experiences is also the same everywhere.

The magnitude of the lift force depends on the value of the reduced lift coefficient qðtÞ, which describes the
behaviour of the wake [25]:

f Lðz; tÞ ¼
1
4
CL0

rFo
DðUeðzÞÞ

2qðtÞ. (9)

The lift coefficient CL0
, assumed to have a constant value of 0.3 [24], is the reference for the reduced lift

coefficient qðtÞ governed by the wake oscillator:

d2qðtÞ
dt2
þ lOnðqðtÞ

2
� 1Þ

dqðtÞ
dt
þ O2

nqðtÞ ¼ F nðtÞ, (10)

where l is the van der Pol parameter and On the nondimensional frequency of vortex-shedding. For the right-
hand term FnðtÞ Facchinetti et al. [25] found that inertial type of coupling best describes the connection
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between the two oscillators:

F nðtÞ ¼ P
d2v̄nðtÞ
dt2

. (11)

Like the left-hand side of Eq. (10), the coupling term FnðtÞ is also nondimensional, with v̄nðtÞ being the
nondimensional acceleration of structural response.

Fluid models based on empirical observations, like the one used in this work (Eq. (10)), approximate flow
behaviour on a plane and by themselves do not account for the spatial correlation between wakes. Expressions
in Eqs. (10) and (11) therefore require the structural displacement vðz; tÞ to be defined only in the temporal
domain. Dependence on a single variable is obtained by reducing the response of the continuous structure to
that of a single-degree-of-freedom system, which is made possible by transforming the original continuous
system to the modal space. Details of this reduction process are to be presented in the following section.

3. The reduction procedure

3.1. Reduction of the structure

The decomposition of the system’s response into its modal components is achieved through substitution of
the Galerking-type discretisation of transverse vðz; tÞ and axial uðz; tÞ displacements [26],

vðz; tÞ ¼
XN

i¼1

viðtÞ~viðzÞ; uðz; tÞ ¼
XM
i¼1

uiðtÞ ~uiðzÞ, (12)

into Eqs. (1), (5), and (6). By invoking the orthogonality property of linear normal modesZ L

0

eviðtÞevjðtÞdz ¼

0; iaj;
L

2
; i ¼ j;

8<: (13)

Z L

0

euiðtÞeujðtÞdz ¼

0; iaj;
L

2
; i ¼ j;

8<: (14)

the following governing equation is obtained for the resonant motion of the linear structure in the nth normal
mode:

€vnðtÞ þ o2
Tn

vnðtÞ ¼ bf ðtÞ, (15)

where the nth transverse natural frequency is denoted as oTn
. The dynamical characteristics are now described

in the temporal domain while the spatial distribution of the response ~vnðzÞ is defined by a harmonic function
that satisfies the boundary conditions:

vðz ¼ 0; tÞ ¼ 0; vðz ¼ L; tÞ ¼ 0, (16)

d2v

dz2
ðz ¼ 0; tÞ ¼ 0;

d2v

dz2
ðz ¼ L; tÞ ¼ 0. (17)

The nonlinear structure is transformed to the same modal space with the harmonic spatial distributions in the
transverse and axial directions— ~vnðzÞ and ~umðzÞ, respectively—forming the basis for its modal response. The
resulting governing equation for the lateral oscillations is

€vnðtÞ þ o2
Tn

vnðtÞ � K
XN

i¼1

XM
j¼1

viðtÞujðtÞGþ
XN

i¼1

XM
j¼1

viðtÞujðtÞU

 

þ
3

2

XN

i¼1

XN

k¼1

XN

l¼1

viðtÞvkðtÞvlðtÞC

!
¼ bf ðtÞ, (18)
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where integrals of known spatial functions are of the form shown below:

G ¼
Z L

0

~viðzÞ
0 ~ujðzÞ

00 ~vnðzÞdz, (19)

U ¼
Z L

0

~viðzÞ
00 ~ujðzÞ

0 ~vnðzÞdz, (20)

C ¼
Z L

0

~viðzÞ
0 ~vkðzÞ

0 ~vlðzÞ
00 ~vnðzÞdz. (21)

The overdot ð_Þ denotes differentiation with respect to time and the prime ð 0 Þ differentiation with respect to the
positional variable z. In the axial direction the nonlinear model (Eq. (6)) is reduced to

€umðtÞ þ o2
Am

umðtÞ � K
XN

i¼1

XN

k¼1

viðtÞvkðtÞF ¼ 0, (22)

where oAm
is the the linear axial natural frequency for the mth mode and F is again an integral of the known

transverse and axial spatial functions:

F ¼
Z L

0

~viðzÞ
0 ~vkðzÞ

00 ~umðzÞdz.

Dependence of the chosen nonlinear normal mode on a number of unexcited modes is shown explicitly by the
the sums in Eqs. (18) and (22), which also represent how the modal spaces are connected. Interestingly, these
connections indicate stiffening in the reduced nonlinear structure that opposes the effect of internal flow.
Where movement of fluid inside the pipe is considered, the fluid parameter m in the reduced model appears
only in the natural frequency oTn

for transverse motion:

oTn
¼

np
L

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnp=LÞ2EI � m

rFi
Ai þ rSTAo þ rFo

ðAi þ AoÞ

s
,

oAm
¼

mp
L

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EAo

rFi
Ai þ rSTAo þ rFo

ðAi þ AoÞ

s
. (23)

For the sake of clarity it should be pointed out that oTn
and oAm

are different for a riser without internal flow:

oTn
¼

np
L

� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI

rSTAo þ rFo
ðAi þ AoÞ

s
,

oAm
¼

mp
L

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EAo

rSTAo þ rFo
ðAi þ AoÞ

s
. (24)

Furthermore, because the response is projected onto planes of linear normal modes, the natural frequencies do
not change for the linear and nonlinear structures.

3.2. Reduction of the fluid forces

External forcing and the initial conditions need to be transferred to the modal space along with the
differential equation for the structure. Damping in Eq. (8) is reduced to a constant force and for uniform flow
it becomes [7] bf Dn

ðtÞ ¼ �1
4
LCDrFo

DU0 _vn, (25)

where L is the length of the structure, CD coefficient of damping, rFo
density of the fluid surrounding the riser,

and U0 is its velocity. The reduced lift force, however, does not have the same form for all normal modes. It is
strongly dependent on the order of normal mode n due to the geometry of the structure and the shape of its
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transverse linear modes [7]. As a consequence, the excitation reduces to zero for the even-ordered modes while
for odd values of n it becomes [7]

bf Ln
ðtÞ ¼

CL0
rFo

DU2
oL

2pn
qðtÞ. (26)

Normally, in analyses of vortex-induced vibration the initial conditions are imposed on the fluid variable qðtÞ

[24], which is done here as well for the coupled system. For the free vibration discussed below, modal initial
conditions were used. It was observed that they exhibit the same property as the lift force, namely that when
they are reduced to the modal space, the initial velocity and initial displacement for even-ordered modes
become zero. For the odd-ordered modes their values are again dependent on n, which means that the velocity
will change in accordance with the following expression [7]:

_vnðt ¼ 0Þ ¼
2Ux0

np
. (27)

The value for Ux0
, representing the physical initial velocity in the cross-flow direction, is set to a maximum of

one tenth of the incident velocity U0 in order to stay within the angular limits for which formulation of forcing
(Eqs. (8) and (9)) is still valid [7]. For the initial displacement caused by a point load in the middle of the riser,
the formula transforming the physical displacement v0 to the modal one is

vnðt ¼ 0Þ ¼
96v0

n4p4
sin

np
2

� �
. (28)

Apart from the damping and lift forces expressed by Eqs. (25) and (26), the rest of the fluid model does not
need to be transformed to modal space because in the lock-in condition the frequency of vortex-shedding On in
Eq. (10) is synchronised with the natural frequency of the structure oTn

for the nth mode. The frequencies are
the same in both spaces [7].

4. Dynamic responses of the structure

4.1. Free vibration

Initially, we determine the effects of the nonlinearity on the dynamic responses of the riser, i.e. without the
excitation from the current. For this, investigations of the system with and without internal flows were
undertaken, which also provided an insight into the behaviour of the riser with a reduced flexural stiffness due
to the internal flow.

A convergence study was carried out to determine the number of modes to be retained in the nonlinear
terms of Eqs. (18) and (22). It was understood that a sufficiently good approximation of the response requires
two axial and one transverse mode. An approximation with two modes in the axial as well as the transverse
direction, for example, is practically indistinguishable from the chosen one [27]. This is not surprising since
both the linear and the nonlinear systems have similar properties, namely, the modes are perfectly symmetrical
or antisymmetrical across the midspan of the structure. Additionally, the boundary conditions are
homogenous (Eqs. (16) and (17)), thus well defined [26].

In order to effectively analyse the nonlinear dynamics of the coupled system, the invariant manifold
approach for deriving nonlinear normal modes [28] was applied to reduce the complexity of the problem even
further, yielding a single ordinary ordinary differential equation from the previous two (Eqs. (18) and (22)):

d2v1ðtÞ

dt2
þ oT1

v1ðtÞ þ av1ðtÞ
3
þ bv1ðtÞ

dv1ðtÞ

dt

� �2

¼ 0, (29)

where a and b are constants at the nonlinear terms obtained from the invariant manifold technique. The non-
directly excited modes, that were captured in these coefficients, were approximated by constraint equations
expressed as power series, which were expanded to third order to accommodate the cubic nonlinearities
appearing in the reduced-order system, Eq. (18):

X iðx; yÞ ¼ a1ixþ a2iyþ a3ix
2 þ a4ixyþ a5iy

2 þ a6ix
3 þ a7ix

2yþ a8ixy2 þ a9iy
3 (30)
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Y iðx; yÞ ¼ b1ixþ b2iyþ b3ix
2 þ b4ixyþ b5iy

2 þ b6ix
3 þ b7ix

2yþ b8ixy2 þ b9iy
3 (31)

Because vortex-induced vibration is self-limiting, thus will prevent structures from deflecting for more than a
maximum of two diameters [29], it can be postulated that the amplitude of the nonlinear structure will not
exceed this limit. In fact, it can be expected that the amplitudes of the linear and nonlinear structures will be
close. Therefore, large deviation from the linear motion is not expected and a power series expansion in the
constraint functions X ðx; yÞ and Y ðx; yÞ can be justified. Correctness of this type of approximation was also
confirmed by comparing results obtained by direct integration of the original nonlinear system in Eqs. (18)
and (22) with the results of Eq. (29). Also, the projections of the nonlinear modal surfaces (i.e. invariant
manifolds) onto the corresponding eigenplanes of the linear model (Figs. 2(b) and 3(b)) indicate a lesser effect
of the nonlinearity in the area of interest for the prescribed initial conditions.

For the differences in responses of the linear and nonlinear structures to be seen most easily, first modes
were compared. In the constraint functions X ðx; yÞ and Y ðx; yÞ, variables x and y represent the displacement
v1ðtÞ and its velocity _v1ðtÞ, respectively. The invariant manifold surfaces, shown in Fig. 2(a) for the
displacement and Fig. 3(a) for the velocity intermodal relationship with the second axial mode, were built for
the structure with and without internal flow to analyse the change of shape of the manifolds when the internal
flow is added to the structure. It was observed that the shape remained practically the same for both
configurations. The differences in coefficients A and B in the constraint equations of second axial mode
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displacement X 2, for instance:

X 2 ¼ Av1ðtÞ
2
þ B_v1ðtÞ

2, (32)

are very small for the structure with and without flow.1 This suggests that the system behaviour is influenced
predominately by the cubic nonlinearity expressed as stiffening. For the free oscillations of the riser without
internal flow, stiffening can be observed for the nonlinear case when motion is initiated with a velocity (Fig. 4),
and even more so when it is displaced by v0 (Fig. 5). The differences in the two graphs can be explained by the
1The values of A and B are, respectively, �0:00261800 and 1:30877� 10�7 for the structure without internal flow and �0:00261799
and 1:34997� 10�7 for the structure with internal flow. Values for B indicate that for a further simplification of the equation of motion,

Eq. (29), this term can easily be omitted because of its insignificant influence on the overall motion.



ARTICLE IN PRESS
M. Keber, M. Wiercigroch / Journal of Sound and Vibration 315 (2008) 685–699694
frequency–amplitude relationship that nonlinear systems generally tend to exhibit [30]. Using the Lindstedt-
Poincaré technique (the nonlinear structure is undamped), an expansion about oT1

was made to obtain a
nonlinear natural frequency [31]:

oTNL
¼ oT1

þ
a2

8

3a
oT1

þ boT1

� �
. (33)

Like the frequency, the nonlinear response function shows the connection between the initial amplitude of
vibration a and its frequency:

v1NL
ðtÞ ¼ a cosðotþ jÞ �

a3

32
�

a
o2

T1

þ b

 !
cosð3otþ 3jÞ. (34)

Contrary to the properties of the manifolds, the characteristics of responses in the time domain change
considerably when internal flow is added. Effect of the structural nonlinearity is much more pronounced in the
oscillation and again the nonlinearity causes a significant frequency change in responses for the displacement
initial condition (Fig. 6), while for the velocity initial condition, it contributes also to a large reduction in
amplitude, as shown in Fig. 7. Although a smaller amplitude would be desired when the riser is in operation,
higher natural frequencies that the nonlinear structure exhibits can lead to precocious damage of the riser due
to an earlier onset of critical fatigue.
4.2. Forced responses

Dynamic responses in the lock-in conditions were simulated by attaching the reduced damping and
lift forces (Eqs. (25) and (26), respectively) to the single-degree-of-freedom oscillators describing the linear
(Eq. (15)) and the nonlinear structures (Eq. (29)). Again, oscillations associated with the first linear natural
dv
/d
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Fig. 6. Comparisons of the free response in the first mode of the linear [- - -] and nonlinear [—] structure with internal flow for v0 ¼ D; (a)

a time history plot and (b) a phase plot.
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Fig. 7. Comparisons of the free responses for the first mode of the linear [- - -] and nonlinear [—] structure with internal flow for

_v0 ¼ U0=10; (a) a time history plot and (b) a phase plot.
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frequency were looked at and compared, even though in actual applications risers tend to vibrate at much higher
resonant frequencies. The velocity of flow U0, on which fluid forces depend, is determined with the Strouhal law:

U0 ¼
oT1

D

2pSt
, (35)

where the vortex-shedding frequency is equal to the chosen natural frequency of the structure oT1
. Thus, the

lock-in condition can be imposed automatically. Following the assumptions made in Ref. [24], the Strouhal
number St is chosen to be 0.2 and is the same for both cases, as are geometrical and material parameters given in
Table 1.

The two important parameters in the wake oscillator l and P effectively define its behaviour. The values
used here were initially the same as those determined by Facchinetti et al. [25], namely l ¼ 0:3 and P ¼ 12,
which were shown to adequately describe the VIVs of linear structures [24]. The results obtained for this
configuration showed the predicted difference in frequency and amplitude for the two systems. A much
smaller amplitude of the nonlinear response compared to the one of the linear could indicate that the
nonlinear system is not in the lock-in condition for these values. Even though this could be a very probable
explanation for such a radical change in magnitude of vibration, it should be recalled here that wake
oscillators are essentially semi-empirical, which means that parameters l and P in Eqs. (10) and (11) need to be
adjusted to fit the actual system behaviour [25]. Therefore, the reason for the variation most probably hides in
the interplay of nonlinearities of the fluid and the structure.

Next, an attempt was made to get the amplitudes of the linear and nonlinear systems as close as possible
with the linear response being the reference. The desire was to see what exactly would happen to the entire
system if amplitudes were matched. If real structures are presumed to be inherently nonlinear, then predicted
nonlinear responses should be similar to experimentally obtained behaviour, especially since vortex-induced
vibration is limited in amplitude [17]. Similar amplitudes were obtained when the coupling strength was
adjusted to a new value of P ¼ 2000. Figs. 8 and 9 show how the nonlinear response changes from small
amplitude oscillations with the frequency close to the linear motion when the initial parameters are used, to
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Table 1

Values of geometrical and material properties of the riser used in calculations

Length (L) 150m

Outer diameter (Do) 0.25m

Inner diameter (Di) 0.125m

Density of riser (rST) 7850kgm�3

Density of fluid outside (rFo
) 1020kgm�3

Density of fluid inside (rFi
) 870kgm�3

Velocity of internal flow 1 (Ui) 0ms�1

Velocity of internal flow 2 (Ui) 39:2ms�1

Young’s modulus ðEÞ 2:1� 1011 Nm�2
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D
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Fig. 8. Time histories of the linear [- - ] and nonlinear [—] structures with internal flow when excited by currents in the lock-in (l ¼ 0:3 and
P ¼ 12 for the linear and the nonlinear case).
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Fig. 9. Time histories of the linear [- - -] and nonlinear [—] structures with internal flow when excited by currents in the lock-in (l ¼ 0:3
and P ¼ 12 for the linear case and l ¼ 0:3 and P ¼ 2000 for the nonlinear case).
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very high-frequency oscillations when the amplitudes are matched. The latter, interestingly, resembles the
oscillations of the linear forced structure without internal flow more than the vibration of a riser with the fluid
flowing through it. Comparing the dynamic responses of the two riser models, the same behaviour can be
deciphered again. When the nonlinearity is introduced, the motion of the riser with internal flow is affected
more, at least as far as the change in amplitude is concerned (Figs. 8 and 10).
5. Dynamics of the wake oscillator

A similar behaviour to that of the structural displacement was expected for the reduced vortex coefficient
qðtÞ since the fluid and structure are coupled. The responses of the fluid variable associated with the linear and
nonlinear models of the structure with internal flow are presented here to emphasise the change in the dynamic
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behaviour that happens when the parameters in the governing differential equation of the fluid, Eq. (10), are
varied. Understanding this behaviour is important because the reduced lift coefficient directly defines the
magnitude of the excitation force acting on the riser.

The oscillations shown in Figs. 11 and 13 correspond to the motion depicted in Figs. 8 and 10, respectively.
Where the same parameters l and P are used for the linear and nonlinear models, the amplitude of the latter
becomes smaller and is close to the amplitude of an unexcited van der Pol oscillation. On the other hand, the
increase in amplitude for the fluid variable qðtÞ is very large (approximately 25 times) when P is changed
(Fig. 12), which implies that the lift force must increase for just as much, when amplitudes of the linear and
nonlinear structures are similar. Comparing qðtÞ of the fully nonlinear system with the one where the structure
is linear, it can be seen that the magnitude increases by approximately ten times. It is very questionable,
however, if this change is realistic or, if it occurs because the current model of the coupled system cannot
properly capture the true behaviour. Since the development of the wake oscillator in Eq. (10) was based on
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Fig. 10. Time histories of the linear [- - -] and nonlinear [—] structures without internal flow when excited by currents in the lock-in

(l ¼ 0:3 and P ¼ 12 for the linear and the nonlinear case).
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Fig. 11. Oscillations of the fluid variable qðtÞ for the linear [- - -] and nonlinear [—] case with internal flow in the lock-in (l ¼ 0:3 and

P ¼ 12 for the linear and the nonlinear case).
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Fig. 12. Oscillations of the fluid variable qðtÞ for the linear [- - -] and nonlinear [—] case with internal flow in the lock-in (l ¼ 0:3 and

P ¼ 12 for the linear case and l ¼ 0:3 and P ¼ 2000 for the nonlinear case).
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Fig. 13. Oscillations of the fluid variable qðtÞ for the linear [- - -] and nonlinear [—] case without internal flow in lock-in (l ¼ 0:3 and

P ¼ 12 for the linear and the nonlinear case).
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laboratory experimental data and was tuned for a rigid cylinder with purely linear characteristics [32], it can be
concluded that the abrupt change in the amplitude of qðtÞ is a consequence of the added structural
nonlinearity and its interaction with the fluid nonlinearity. Once more, and this time perhaps even more
clearly, the need for a modified model of the coupled system becomes apparent (see Figs. 11–13).

6. Conclusions

The undertaken study aimed at investigating the effect of a weak structural nonlinearity on a vertical riser
oscillating in the lock-in condition. It was observed that the presented model for fluid–structure interaction
bears some similarities to the findings in the recent work on a different system with interacting structural
nonlinearities [33]. More importantly, it was demonstrated that the nonlinear effects on the behaviour are
substantial when compared with responses of a linear structure, both in free and forced motion.

Comparisons of responses were made for a linear riser with and without internal flow. As expected, both
cases exhibit a stiffening effect when the geometric nonlinearity of the structure is introduced in free motion as
well as when undergoing vortex-induced vibration. However, the nonlinearity affects the system with the
internal flow considerably more. Since the oscillation frequency is much lower for this configuration, the
change can be contributed solely to the frequency–amplitude characteristics of the nonlinear model. To gain a
further insight, a dedicated parametric investigation and comparison with the experimental data would need
to be made in order to validate the model for the nonlinear case. The results presented here give an indication
of how a vertical riser with a weak geometrical nonlinearity would tend to behave if excited by a uniform
current at a single resonance. Even though its maximal amplitude could be smaller than the one predicted by a
linear model, the frequency change would still lead to a shorter fatigue life.

The fluid variable does not give a direct indication of the configuration of wakes behind the cylinder, but it
can be inferred from the time histories that it is still well organised with the vortices being shed periodically
also for the nonlinear structure with and without internal flow. In fact, the simulated examples of the
displacement and the reduced vortex coefficient show that they oscillate with a constant frequency and
amplitude in a manner similar to the linear model.
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